http://opendata.unex.es/recurso/ciencia-tecnologia/investigacion/tesis/Tesis/2018-29

RESUMENEl hongo C. albicans forma parte de la microbiota comensal de las mucosas del tracto gastrointestinal y genitourinario de seres humanos. En condiciones de disbiosis o inmunosupresión, se produce una transición de comensal a patógeno en la que se producen cambios morfológicos que tienen relevancia en la producción de daño en las células epiteliales del huésped. La NDR quinasa Cbk1, efector final de la ruta RAM/MOR, desempeña un papel esencial en este proceso de transición morfológica ya que células deficientes en actividad Cbk1 son incapaces de formar hifas. Esta quinasa es capaz de integrar las señales ambientales inductoras del crecimiento hifal aunque se desconocen los mecanismos postraduccionales implicados. Este estudio ha puesto de manifiesto que Cbk1 modifica su patrón de fosforilación en respuesta a suero en dos etapas. Al inicio de la respuesta, durante la formación del tubo germinativo, se produce una rápida desfosforilación que depende de la fosfatasa Cdc14 y de la ruta cAMP-PKA. Posteriormente, durante el mantenimiento del crecimiento hifal, Cbk1 es refosforilada por un mecanismo que depende de la quinasa dependiente de ciclina (Cdk) Cdc28 y de la ciclina específica de miceliación Hgc1. El análisis de los mutantes fosfodeficientes y fosfomiméticos en los posibles residuos fosfoaceptores de Cbk1 han puesto de manifiesto que estas modificaciones son esenciales para mantener el crecimiento polarizado de la hifa e inhibir la separación celular. Además, los resultados derivados de las interacciones génicas con SSD1 nos ha permitido concluir que la función de Cbk1 al inicio de la respuesta a suero consiste en inhibir la función de Ssd1, proteína que reprime la traducción de los mRNAS a los que está unido, mientras que, durante el mantenimiento de la respuesta, su función en el crecimiento hifal es independiente de su control sobre Ssd1. Con el fin de caracterizar mejor el papel de Cbk1 en esta segunda fase, se construyó el mutante cbk1-M412A que dio lugar a una quinasa sensible al análogo 1NM-PP1. El uso de este mutante nos permitió inactivar la quinasa rápidamente cuando las células habían formado hifas. Este tipo de experimentos nos ha permitido concluir que la actividad de Cbk1 es necesaria para mantener a Spa2, componente del polarisoma, localizado en el ápice de la hifa de forma constante e independiente del ciclo celular. También hemos puesto de manifiesto una función no esperada en la parada del ciclo celular de las células subapicales.Por último, en este trabajo hemos profundizado en la regulación de la fosfatasa Cdc14, que también es necesaria para activar el crecimiento hifal en respuesta a suero. Nuestros resultados han permitido identificar a las quinasas Cdc28, Cbk1 y a la propia fosfatasa, como factores importantes que regulan la función de Cdc14. La generación de un mutante catalíticamente inactivo de Cdc14, cdc14-CS, y el estudio de su estado de fosforilación en diferentes fondos genéticos nos ha permitido concluir que Cdc14 se autodesfosforila mediante interacciones intermoleculares, actividad que requiere de la señalización mediada por la ruta RAM/MOR. También, los resultados obtenidos con el mutante condicional cdc28-as sugieren que esta Cdk estabiliza e inhibe la actividad de Cdc14. Todas estas relaciones nos han llevado a proponer un modelo distinto al descrito en S. cerevisiae sobre el control de Cdc14 al final de la mitosis.BIBLIOGRAFÍAAlonso-Monge, R., Navarro-Garcia, F., Roman, E., Negredo, A.I., Eisman, B., Nombela, C., and Pla, J. (2003). The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryotic cell 2, 351-361.Bachewich, C., and Whiteway, M. (2005). Cyclin Cln3p links G1 progression to hyphal and pseudohyphal development in Candida albicans. Eukaryotic cell 4, 95-102.Bahn, Y.S., Staab, J., and Sundstrom, P. (2003). Increased high-affinity phosphodiesterase PDE2 gene expression in germ tubes counteracts CAP1-dependent synthesis of cyclic AMP, limits hypha production and promotes virulence of Candida albicans. Molecular microbiology 50, 391-409.Bardin, A.J., and Amon, A. (2001). Men and sin: what's the difference? Nat Rev Mol Cell Biol 2, 815-826.Bates, S. (2018). Candida albicans Cdc15 is essential for mitotic exit and cytokinesis. Scientific reports 8, 8899.Berman, J., and Sudbery, P.E. (2002). Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 3, 918-930.Bernardo, S.M., Rane, H.S., Chavez-Dozal, A., and Lee, S.A. (2014). Secretion and filamentation are mediated by the Candida albicans t-SNAREs Sso2p and Sec9p. FEMS yeast research 14, 762-775.Bidlingmaier, S., Weiss, E.L., Seidel, C., Drubin, D.G., and Snyder, M. (2001). The Cbk1p pathway is important for polarized cell growth and cell separation in Saccharomyces cerevisiae. Mol Cell Biol 21, 2449-2462.Bishop, A., Lane, R., Beniston, R., Chapa-y-Lazo, B., Smythe, C., and Sudbery, P. (2010). Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase. The EMBO journal 29, 2930-2942.Bishop, A.C., Ubersax, J.A., Petsch, D.T., Matheos, D.P., Gray, N.S., Blethrow, J., Shimizu, E., Tsien, J.Z., Schultz, P.G., Rose, M.D., et al. (2000). A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395-401.Biswas, K., and Morschhauser, J. (2005). The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Molecular microbiology 56, 649-669.Biswas, S., Van Dijck, P., and Datta, A. (2007). Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 71, 348-376.Blethrow, J., Zhang, C., Shokat, K.M., and Weiss, E.L. (2004). Design and use of analog-sensitive protein kinases. Current protocols in molecular biology Chapter 18, Unit 18 11.Bockmuhl, D.P., and Ernst, J.F. (2001). A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics 157, 1523-1530.Brace, J., Hsu, J., and Weiss, E.L. (2011). Mitotic Exit Control of the Saccharomyces cerevisiae Ndr/LATS Kinase Cbk1 Regulates Daughter Cell Separation after Cytokinesis. Mol Cell Biol 31, 721-735.Braun, B.R., Head, W.S., Wang, M.X., and Johnson, A.D. (2000). Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156, 31-44.Braun, B.R., and Johnson, A.D. (1997). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105-109.Braun, B.R., Kadosh, D., and Johnson, A.D. (2001). NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. The EMBO journal 20, 4753-4761.Bremmer, S.C., Hall, H., Martinez, J.S., Eissler, C.L., Hinrichsen, T.H., Rossie, S., Parker, L.L., Hall, M.C., and Charbonneau, H. (2012). Cdc14 phosphatases preferentially dephosphorylate a subset of cyclin-dependent kinase (Cdk) sites containing phosphoserine. The Journal of biological chemistry 287, 1662-1669.Bruno, V.M., Wang, Z., Marjani, S.L., Euskirchen, G.M., Martin, J., Sherlock, G., and Snyder, M. (2010). Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq. Genome research 20, 1451-1458.Caballero-Lima, D., Hautbergue, G.M., Wilson, S.A., and Sudbery, P.E. (2014). In Candida albicans hyphae, Sec2p is physically associated with SEC2 mRNA on secretory vesicles. Molecular microbiology 94, 828-842.Caballero-Lima, D., and Sudbery, P.E. (2014). In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension. Molecular biology of the cell 25, 1097-1110.Cao, C., Wu, M., Bing, J., Tao, L., Ding, X., Liu, X., and Huang, G. (2017). Global regulatory roles of the cAMP/PKA pathway revealed by phenotypic, transcriptomic and phosphoproteomic analyses in a null mutant of the PKA catalytic subunit in Candida albicans. Molecular microbiology 105, 46-64.Carlisle, P.L., and Kadosh, D. (2010). Candida albicans Ume6, a filament-specific transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-related protein. Eukaryotic cell 9, 1320-1328.Casadevall, A., and Pirofski, L.A. (2003). The damage-response framework of microbial pathogenesis. Nature reviews 1, 17-24.Clemente-Blanco, A., Gonzalez-Novo, A., Machin, F., Caballero-Lima, D., Aragon, L., Sanchez, M., de Aldana, C.R., Jimenez, J., and Correa-Bordes, J. (2006). The Cdc14p phosphatase affects late cell-cycle events and morphogenesis in Candida albicans. Journal of cell science 119, 1130-1143.Colman-Lerner, A., Chin, T.E., and Brent, R. (2001). Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107, 739-750.Chan, E.H., Nousiainen, M., Chalamalasetty, R.B., Schafer, A., Nigg, E.A., and Sillje, H.H. (2005). The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24, 2076-2086.Chapa y Lazo, B., Bates, S., and Sudbery, P. (2005). The G1 cyclin Cln3 regulates morphogenesis in Candida albicans. Eukaryotic cell 4, 90-94.Chiou, J.G., Balasubramanian, M.K., and Lew, D.J. (2017). Cell Polarity in Yeast. Annual review of cell and developmental biology 33, 77-101.Das, M., Wiley, D.J., Chen, X., Shah, K., and Verde, F. (2009). The conserved NDR kinase Orb6 controls polarized cell growth by spatial regulation of the small GTPase Cdc42. Curr Biol 19, 1314-1319.de Bettignies, G., and Johnston, L.H. (2003). The mitotic exit network. Curr Biol 13, R301.Dumitrescu, T.P., and Saunders, W.S. (2002). The FEAR Before MEN: networks of mitotic exit. Cell cycle (Georgetown, Tex 1, 304-307.Emoto, K., He, Y., Ye, B., Grueber, W.B., Adler, P.N., Jan, L.Y., and Jan, Y.N. (2004). Control of dendritic branching and tiling by the Tricornered-kinase/Furry signaling pathway in Drosophila sensory neurons. Cell 119, 245-256.Evangelista, M., Blundell, K., Longtine, M.S., Chow, C.J., Adames, N., Pringle, J.R., Peter, M., and Boone, C. (1997). Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis. Science (New York, NY 276, 118-122.Fang, H.M., and Wang, Y. (2006). RA domain-mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development. Molecular microbiology 61, 484-496.Fernandez, I., Ubach, J., Dulubova, I., Zhang, X., Sudhof, T.C., and Rizo, J. (1998). Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94, 841-849.Fonzi, W.A., and Irwin, M.Y. (1993). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717-728.Fujiwara, T., Tanaka, K., Mino, A., Kikyo, M., Takahashi, K., Shimizu, K., and Takai, Y. (1998). Rho1p-Bni1p-Spa2p interactions: implication in localization of Bni1p at the bud site and regulation of the actin cytoskeleton in Saccharomyces cerevisiae. Molecular biology of the cell 9, 1221-1233.Gallegos, M.E., and Bargmann, C.I. (2004). Mechanosensory neurite termination and tiling depend on SAX-2 and the SAX-1 kinase. Neuron 44, 239-249.Garcia-Sanchez, S., Mavor, A.L., Russell, C.L., Argimon, S., Dennison, P., Enjalbert, B., and Brown, A.J. (2005). Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Molecular biology of the cell 16, 2913-2925.Geymonat, M., Jensen, S., and Johnston, L.H. (2002). Mitotic exit: the Cdc14 double cross. Curr Biol 12, R482-484.Gogl, G., Schneider, K.D., Yeh, B.J., Alam, N., Nguyen Ba, A.N., Moses, A.M., Hetenyi, C., Remenyi, A., and Weiss, E.L. (2015). The Structure of an NDR/LATS Kinase-Mob Complex Reveals a Novel Kinase-Coactivator System and Substrate Docking Mechanism. PLoS biology 13, e1002146.Gola, S., Martin, R., Walther, A., Dunkler, A., and Wendland, J. (2003). New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast (Chichester, England) 20, 1339-1347.González-Novo, A., Correa-Bordes, J., Labrador, L., Sánchez, M., Vázquez de Aldana, C.R., and Jiménez, J. (2008). Sep7 is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth. Molecular biology of the cell 19, 1509-1518.Gow, N.A., and Gooday, G.W. (1982). Vacuolation, branch production and linear growth of germ tubes in Candida albicans. Journal of general microbiology 128, 2195-2198.Gray, C.H., Good, V.M., Tonks, N.K., and Barford, D. (2003). The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase. The EMBO journal 22, 3524-3535.Gregan, J., Zhang, C., Rumpf, C., Cipak, L., Li, Z., Uluocak, P., Nasmyth, K., and Shokat, K.M. (2007). Construction of conditional analog-sensitive kinase alleles in the fission yeast Schizosaccharomyces pombe. Nature protocols 2, 2996-3000.Gutiérrez-Escribano, P. (2011). Role of the NDR kinase Cbk1 in the regulation of morphogenesis and transcriptional control in C. albicans. Tesis Doctoral Universidad de Extremadura.Gutierrez-Escribano, P., Gonzalez-Novo, A., Suarez, M.B., Li, C.R., Wang, Y., de Aldana, C.R., and Correa-Bordes, J. (2011). CDK-dependent phosphorylation of Mob2 is essential for hyphal development in Candida albicans. Molecular biology of the cell 22, 2458-2469.Gutierrez-Escribano, P., Zeidler, U., Suarez, M.B., Bachellier-Bassi, S., Clemente-Blanco, A., Bonhomme, J., Vazquez de Aldana, C.R., d'Enfert, C., and Correa-Bordes, J. (2012). The NDR/LATS Kinase Cbk1 Controls the Activity of the Transcriptional Regulator Bcr1 during Biofilm Formation in Candida albicans. PLoS pathogens 8, e1002683.Hall, R.A., and Noverr, M.C. (2017). Fungal interactions with the human host: exploring the spectrum of symbiosis. Current opinion in microbiology 40, 58-64.Harcus, D., Nantel, A., Marcil, A., Rigby, T., and Whiteway, M. (2004). Transcription profiling of cyclic AMP signaling in Candida albicans. Molecular biology of the cell 15, 4490-4499.Hazan, I., Sepulveda-Becerra, M., and Liu, H. (2002). Hyphal elongation is regulated independently of cell cycle in Candida albicans. Molecular biology of the cell 13, 134-145.Hergovich, A., Bichsel, S.J., and Hemmings, B.A. (2005). Human NDR kinases are rapidly activated by MOB proteins through recruitment to the plasma membrane and phosphorylation. Mol Cell Biol 25, 8259-8272.Hergovich, A., Stegert, M.R., Schmitz, D., and Hemmings, B.A. (2006). NDR kinases regulate essential cell processes from yeast to humans. Nat Rev Mol Cell Biol 7, 253-264.Hogan, D.A., and Sundstrom, P. (2009). The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future microbiology 4, 1263-1270.Hogan, D.J., Riordan, D.P., Gerber, A.P., Herschlag, D., and Brown, P.O. (2008). Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS biology 6, e255.Holt, L.J., Tuch, B.B., Villen, J., Johnson, A.D., Gygi, S.P., and Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science (New York, NY 325, 1682-1686.Hornby, J.M., Jensen, E.C., Lisec, A.D., Tasto, J.J., Jahnke, B., Shoemaker, R., Dussault, P., and Nickerson, K.W. (2001). Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67, 2982-2992.Hotz, M., and Barral, Y. (2014). The Mitotic Exit Network: new turns on old pathways. Trends in cell biology 24, 145-152.Hou, M.C., Wiley, D.J., Verde, F., and McCollum, D. (2003). Mob2p interacts with the protein kinase Orb6p to promote coordination of cell polarity with cell cycle progression. Journal of cell science 116, 125-135.Howell, A.S., and Lew, D.J. (2012). Morphogenesis and the cell cycle. Genetics 190, 51-77.Hoyer, L.L. (2001). The ALS gene family of Candida albicans. Trends Microbiol 9, 176-180.Jakobsen, M.K., Cheng, Z., Lam, S.K., Roth-Johnson, E., Barfield, R.M., and Schekman, R. (2013). Phosphorylation of Chs2p regulates interaction with COPII. Journal of cell science 126, 2151-2156.Jansen, J.M., Barry, M.F., Yoo, C.K., and Weiss, E.L. (2006). Phosphoregulation of Cbk1 is critical for RAM network control of transcription and morphogenesis. The Journal of cell biology 175, 755-766.Jansen, J.M., Wanless, A.G., Seidel, C.W., and Weiss, E.L. (2009). Cbk1 regulation of the RNA-binding protein Ssd1 integrates cell fate with translational control. Curr Biol 19, 2114-2120.Jarosz, L.M., Deng, D.M., van der Mei, H.C., Crielaard, W., and Krom, B.P. (2009). Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. Eukaryotic cell 8, 1658-1664.Jones, L.A., and Sudbery, P.E. (2010). Spitzenkorper, exocyst, and polarisome components in Candida albicans hyphae show different patterns of localization and have distinct dynamic properties. Eukaryotic cell 9, 1455-1465.Jorgensen, P., Nelson, B., Robinson, M.D., Chen, Y., Andrews, B., Tyers, M., and Boone, C. (2002). High-resolution genetic mapping with ordered arrays of Saccharomyces cerevisiae deletion mutants. Genetics 162, 1091-1099.Kadosh, D., and Johnson, A.D. (2001). Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21, 2496-2505.Kadosh, D., and Johnson, A.D. (2005). Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Molecular biology of the cell 16, 2903-2912.Kelly, M.T., MacCallum, D.M., Clancy, S.D., Odds, F.C., Brown, A.J., and Butler, G. (2004). The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Molecular microbiology 53, 969-983.Knaus, M., Pelli-Gulli, M.P., van Drogen, F., Springer, S., Jaquenoud, M., and Peter, M. (2007). Phosphorylation of Bem2p and Bem3p may contribute to local activation of Cdc42p at bud emergence. The EMBO journal 26, 4501-4513.Kodama, S., Ishizuka, J., Miyashita, I., Ishii, T., Nishiuchi, T., Miyoshi, H., and Kubo, Y. (2017). The morphogenesis-related NDR kinase pathway of Colletotrichum orbiculare is required for translating plant surface signals into infection-related morphogenesis and pathogenesis. PLoS pathogens 13, e1006189.Kottom, T.J., Kohler, J.R., Thomas, C.F., Jr., Fink, G.R., and Limper, A.H. (2003). Lung epithelial cells and extracellular matrix components induce expression of Pneumocystis carinii STE20, a gene complementing the mating and pseudohyphal growth defects of STE20 mutant yeast. Infection and immunity 71, 6463-6471.Kurischko, C., Kim, H.K., Kuravi, V.K., Pratzka, J., and Luca, F.C. (2011). The yeast Cbk1 kinase regulates mRNA localization via the mRNA-binding protein Ssd1. The Journal of cell biology 192, 583-598.Kurischko, C., Kuravi, V.K., Wannissorn, N., Nazarov, P.A., Husain, M., Zhang, C., Shokat, K.M., McCaffery, J.M., and Luca, F.C. (2008). The yeast LATS/Ndr kinase Cbk1 regulates growth via Golgi-dependent glycosylation and secretion. Molecular biology of the cell 19, 5559-5578.Kurischko, C., Weiss, G., Ottey, M., and Luca, F.C. (2005). A role for the Saccharomyces cerevisiae regulation of Ace2 and polarized morphogenesis signaling network in cell integrity. Genetics 171, 443-455.Lavoie, H., Sellam, A., Askew, C., Nantel, A., and Whiteway, M. (2008). A toolbox for epitope-tagging and genome-wide location analysis in Candida albicans. BMC Genomics 9, 578.Leberer, E., Harcus, D., Dignard, D., Johnson, L., Ushinsky, S., Thomas, D.Y., and Schroppel, K. (2001). Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Molecular microbiology 42, 673-687.Lee, H., Damsz, B., Woloshuk, C.P., Bressan, R.A., and Narasimhan, M.L. (2010). Use of the plant defense protein osmotin to identify Fusarium oxysporum genes that control cell wall properties. Eukaryotic cell 9, 558-568.Lee, H.J., Kim, J.M., Kang, W.K., Yang, H., and Kim, J.Y. (2015). The Ndr kinase Cbk1 down-regulates the transcriptional repressor Nrg1 through the mRNA-binding protein Ssd1 in Candida albicans. Eukaryotic cell.Lee, K.H., Hsu, E.C., Guh, J.H., Yang, H.C., Wang, D., Kulp, S.K., Shapiro, C.L., and Chen, C.S. (2011). Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator. The Journal of biological chemistry 286, 39247-39258.Lengefeld, J., and Barral, Y. (2018). Asymmetric Segregation of Aged Spindle Pole Bodies During Cell Division: Mechanisms and Relevance Beyond Budding Yeast? Bioessays 40, e1800038.Lew, D.J., and Reed, S.I. (1993). Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. The Journal of cell biology 120, 1305-1320.Lew, D.J., and Reed, S.I. (1995). A cell cycle checkpoint monitors cell morphogenesis in budding yeast. The Journal of cell biology 129, 739-749.Li, C.R., Au Yong, J.Y., Wang, Y.M., and Wang, Y. (2012). CDK regulates septin organization through cell-cycle-dependent phosphorylation of the Nim1-related kinase Gin4. Journal of cell science 125, 2533-2543.Li, C.R., Lee, R.T., Wang, Y.M., Zheng, X.D., and Wang, Y. (2007). Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation. Journal of cell science 120, 1898-1907.Lin, C.J., and Chen, Y.L. (2018). Conserved and Divergent Functions of the cAMP/PKA Signaling Pathway in Candida albicans and Candida tropicalis. Journal of fungi (Basel, Switzerland) 4.Liu, H., Kohler, J., and Fink, G.R. (1994). Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science (New York, NY 266, 1723-1726.Loeb, J.D., Sepulveda-Becerra, M., Hazan, I., and Liu, H. (1999). A G1 cyclin is necessary for maintenance of filamentous growth in Candida albicans. Mol Cell Biol 19, 4019-4027.Lu, Y., Su, C., Unoje, O., and Liu, H. (2014). Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. Proceedings of the National Academy of Sciences of the United States of America 111, 1975-1980.Lu, Y., Su, C., Wang, A., and Liu, H. (2011). Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS biology 9, e1001105.Luo, G., Zhang, J., Luca, F.C., and Guo, W. (2013). Mitotic phosphorylation of Exo84 disrupts exocyst assembly and arrests cell growth. The Journal of cell biology 202, 97-111.Maerz, S., and Seiler, S. (2010). Tales of RAM and MOR: NDR kinase signaling in fungal morphogenesis. Current opinion in microbiology 13, 663-671.Maerz, S., Ziv, C., Vogt, N., Helmstaedt, K., Cohen, N., Gorovits, R., Yarden, O., and Seiler, S. (2008). The nuclear Dbf2-related kinase COT1 and the mitogen-activated protein kinases MAK1 and MAK2 genetically interact to regulate filamentous growth, hyphal fusion and sexual development in Neurospora crassa. Genetics 179, 1313-1325.Mayer, F.L., Wilson, D., and Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence 4, 119-128.Mazanka, E., Alexander, J., Yeh, B.J., Charoenpong, P., Lowery, D.M., Yaffe, M., and Weiss, E.L. (2008). The NDR/LATS family kinase Cbk1 directly controls transcriptional asymmetry. PLoS biology 6, e203.Mazanka, E., and Weiss, E.L. (2010). Sequential counteracting kinases restrict an asymmetric gene expression program to early G1. Molecular biology of the cell 21, 2809-2820.McCollum, D., and Gould, K.L. (2001). Timing is everything: regulation of mitotic exit and cytokinesis by the MEN and SIN. Trends in cell biology 11, 89-95.McCusker, D., Denison, C., Anderson, S., Egelhofer, T.A., Yates, J.R., 3rd, Gygi, S.P., and Kellogg, D.R. (2007). Cdk1 coordinates cell-surface growth with the cell cycle. Nat Cell Biol 9, 506-515.McNemar, M.D., and Fonzi, W.A. (2002). Conserved serine/threonine kinase encoded by CBK1 regulates expression of several hypha-associated transcripts and genes encoding cell wall proteins in Candida albicans. J Bacteriol 184, 2058-2061.Meitinger, F., Palani, S., and Pereira, G. (2012). The power of MEN in cytokinesis. Cell cycle (Georgetown, Tex 11, 219-228.Mendenhall, M.D., and Hodge, A.E. (1998). Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62, 1191-1243.Miwa, T., Takagi, Y., Shinozaki, M., Yun, C.W., Schell, W.A., Perfect, J.R., Kumagai, H., and Tamaki, H. (2004). Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans. Eukaryotic cell 3, 919-931.Mohl, D.A., Huddleston, M.J., Collingwood, T.S., Annan, R.S., and Deshaies, R.J. (2009). Dbf2-Mob1 drives relocalization of protein phosphatase Cdc14 to the cytoplasm during exit from mitosis. The Journal of cell biology 184, 527-539.Moyes, D.L., Runglall, M., Murciano, C., Shen, C., Nayar, D., Thavaraj, S., Kohli, A., Islam, A., Mora-Montes, H., Challacombe, S.J., et al. (2010). A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell host & microbe 8, 225-235.Moyes, D.L., Wilson, D., Richardson, J.P., Mogavero, S., Tang, S.X., Wernecke, J., Hofs, S., Gratacap, R.L., Robbins, J., Runglall, M., et al. (2016). Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64-68.Murad, A.M., Leng, P., Straffon, M., Wishart, J., Macaskill, S., MacCallum, D., Schnell, N., Talibi, D., Marechal, D., Tekaia, F., et al. (2001). NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. The EMBO journal 20, 4742-4752.Nantel, A., Dignard, D., Bachewich, C., Harcus, D., Marcil, A., Bouin, A.P., Sensen, C.W., Hogues, H., van het Hoog, M., Gordon, P., et al. (2002). Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Molecular biology of the cell 13, 3452-3465.Nelson, B., Kurischko, C., Horecka, J., Mody, M., Nair, P., Pratt, L., Zougman, A., McBroom, L.D., Hughes, T.R., Boone, C., et al. (2003). RAM: a conserved signaling network that regulates Ace2p transcriptional activity and polarized morphogenesis. Molecular biology of the cell 14, 3782-3803.Noble, S.M., Gianetti, B.A., and Witchley, J.N. (2017). Candida albicans cell-type switching and functional plasticity in the mammalian host. Nature reviews 15, 96-108.Novak, B., Tyson, J.J., Gyorffy, B., and Csikasz-Nagy, A. (2007). Irreversible cell-cycle transitions are due to systems-level feedback. Nature cell biology 9, 724-728.Nunez, I., Rodriguez Pino, M., Wiley, D.J., Das, M.E., Chen, C., Goshima, T., Kume, K., Hirata, D., Toda, T., and Verde, F. (2016). Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5. eLife 5.Ovejero, S., Ayala, P., Malumbres, M., Pimentel-Muinos, F.X., Bueno, A., and Sacristan, M.P. (2018). Biochemical analyses reveal amino acid residues critical for cell cycle-dependent phosphorylation of human Cdc14A phosphatase by cyclin-dependent kinase 1. Scientific reports 8, 11871.Park, H.O., and Bi, E. (2007). Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 71, 48-96.Pfaller, M.A., and Diekema, D.J. (2007). Epidemiology of invasive candidiasis: a persistent public health problem. Clinical microbiology reviews 20, 133-163.Phan, Q.T., Myers, C.L., Fu, Y., Sheppard, D.C., Yeaman, M.R., Welch, W.H., Ibrahim, A.S., Edwards, J.E., Jr., and Filler, S.G. (2007). Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS biology 5, e64.Queralt, E., and Uhlmann, F. (2008). Cdk-counteracting phosphatases unlock mitotic exit. Current opinion in cell biology 20, 661-668.Racki, W.J., Becam, A.M., Nasr, F., and Herbert, C.J. (2000). Cbk1p, a protein similar to the human myotonic dystrophy kinase, is essential for normal morphogenesis in Saccharomyces cerevisiae. The EMBO journal 19, 4524-4532.Rechsteiner, M., and Rogers, S.W. (1996). PEST sequences and regulation by proteolysis. Trends in biochemical sciences 21, 267-271.Reijnst, P., Walther, A., and Wendland, J. (2011). Dual-colour fluorescence microscopy using yEmCherry-/GFP-tagging of eisosome components Pil1 and Lsp1 in Candida albicans. Yeast (Chichester, England) 28, 331-338.Rock, J.M., Lim, D., Stach, L., Ogrodowicz, R.W., Keck, J.M., Jones, M.H., Wong, C.C., Yates, J.R., 3rd, Winey, M., Smerdon, S.J., et al. (2013). Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes. Science (New York, NY 340, 871-875.Rogers, S., Wells, R., and Rechsteiner, M. (1986). Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science (New York, NY 234, 364-368.Santos, M.A., Cheesman, C., Costa, V., Moradas-Ferreira, P., and Tuite, M.F. (1999). Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp. Molecular microbiology 31, 937-947.Saputo, S., Chabrier-Rosello, Y., Luca, F.C., Kumar, A., and Krysan, D.J. (2012). The RAM network in pathogenic fungi. Eukaryotic cell 11, 708-717.Saputo, S., Kumar, A., and Krysan, D.J. (2014). Efg1 directly regulates ACE2 expression to mediate cross talk between the cAMP/PKA and RAM pathways during Candida albicans morphogenesis. Eukaryotic cell 13, 1169-1180.Sartorel, E., and Perez-Martin, J. (2012). The distinct interaction between cell cycle regulation and the widely conserved morphogenesis-related (MOR) pathway in the fungus Ustilago maydis determines morphology. Journal of cell science 125, 4597-4608.Sasse, C., and Morschhauser, J. (2012). Gene deletion in Candida albicans wild-type strains using the SAT1-flipping strategy. Methods in molecular biology (Clifton, NJ 845, 3-17.Sbia, M., Parnell, E.J., Yu, Y., Olsen, A.E., Kretschmann, K.L., Voth, W.P., and Stillman, D.J. (2008). Regulation of the yeast Ace2 transcription factor during the cell cycle. The Journal of biological chemistry 283, 11135-11145.Schaub, Y., Dunkler, A., Walther, A., and Wendland, J. (2006). New pFA-cassettes for PCR-based gene manipulation in Candida albicans. J Basic Microbiol 46, 416-429.Seiler, S., Vogt, N., Ziv, C., Gorovits, R., and Yarden, O. (2006). The STE20/germinal center kinase POD6 interacts with the NDR kinase COT1 and is involved in polar tip extension in Neurospora crassa. Molecular biology of the cell 17, 4080-4092.Shapiro, R.S., Robbins, N., and Cowen, L.E. (2011). Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75, 213-267.Sheu, Y.J., Barral, Y., and Snyder, M. (2000). Polarized growth controls cell shape and bipolar bud site selection in Saccharomyces cerevisiae. Molecular and cellular biology 20, 5235-5247.Shou, W., Seol, J.H., Shevchenko, A., Baskerville, C., Moazed, D., Chen, Z.W., Jang, J., Shevchenko, A., Charbonneau, H., and Deshaies, R.J. (1999). Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233-244.Sinha, I., Wang, Y.M., Philp, R., Li, C.R., Yap, W.H., and Wang, Y. (2007). Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development. Developmental cell 13, 421-432.Song, Y., Cheon, S.A., Lee, K.E., Lee, S.Y., Lee, B.K., Oh, D.B., Kang, H.A., and Kim, J.Y. (2008). Role of the RAM network in cell polarity and hyphal morphogenesis in Candida albicans. Molecular biology of the cell 19, 5456-5477.Sonneborn, A., Bockmuhl, D.P., Gerads, M., Kurpanek, K., Sanglard, D., and Ernst, J.F. (2000). Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Molecular microbiology 35, 386-396.Sopko, R., Huang, D., Smith, J.C., Figeys, D., and Andrews, B.J. (2007). Activation of the Cdc42p GTPase by cyclin-dependent protein kinases in budding yeast. The EMBO journal 26, 4487-4500.Stegert, M.R., Tamaskovic, R., Bichsel, S.J., Hergovich, A., and Hemmings, B.A. (2004). Regulation of NDR2 protein kinase by multi-site phosphorylation and the S100B calcium-binding protein. The Journal of biological chemistry 279, 23806-23812.Stegmeier, F., and Amon, A. (2004). Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu Rev Genet 38, 203-232.Stegmeier, F., Visintin, R., and Amon, A. (2002). Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108, 207-220.Stoldt, V.R., Sonneborn, A., Leuker, C.E., and Ernst, J.F. (1997). Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. The EMBO journal 16, 1982-1991.Sudbery, P., Gow, N., and Berman, J. (2004). The distinct morphogenic states of Candida albicans. Trends Microbiol 12, 317-324.Sudbery, P.E. (2011). Growth of Candida albicans hyphae. Nature reviews 9, 737-748.Sullivan, M., and Morgan, D.O. (2007). A novel destruction sequence targets the meiotic regulator Spo13 for anaphase-promoting complex-dependent degradation in anaphase I. J Biol Chem 282, 19710-19715.Tamaskovic, R., Bichsel, S.J., and Hemmings, B.A. (2003). NDR family of AGC kinases--essential regulators of the cell cycle and morphogenesis. FEBS letters 546, 73-80.Tanaka, S., Yamada, K., Yabumoto, K., Fujii, S., Huser, A., Tsuji, G., Koga, H., Dohi, K., Mori, M., Shiraishi, T., et al. (2007). Saccharomyces cerevisiae SSD1 orthologues are essential for host infection by the ascomycete plant pathogens Colletotrichum lagenarium and Magnaporthe grisea. Molecular microbiology 64, 1332-1349.Teh, E.M., Chai, C.C., and Yeong, F.M. (2009). Retention of Chs2p in the ER requires N-terminal CDK1-phosphorylation sites. Cell cycle (Georgetown, Tex 8, 2964-2974.Traverso, E.E., Baskerville, C., Liu, Y., Shou, W., James, P., Deshaies, R.J., and Charbonneau, H. (2001). Characterization of the Net1 cell cycle-dependent regulator of the Cdc14 phosphatase from budding yeast. The Journal of biological chemistry 276, 21924-21931.Uesono, Y., Toh-e, A., and Kikuchi, Y. (1997). Ssd1p of Saccharomyces cerevisiae associates with RNA. The Journal of biological chemistry 272, 16103-16109.van het Hoog, M., Rast, T.J., Martchenko, M., Grindle, S., Dignard, D., Hogues, H., Cuomo, C., Berriman, M., Scherer, S., Magee, B.B., et al. (2007). Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome biology 8, R52.Verde, F., Wiley, D.J., and Nurse, P. (1998). Fission yeast orb6, a ser/thr protein kinase related to mammalian rho kinase and myotonic dystrophy kinase, is required for maintenance of cell polarity and coordinates cell morphogenesis with the cell cycle. Proceedings of the National Academy of Sciences of the United States of America 95, 7526-7531.Vertii, A., Kaufman, P.D., Hehnly, H., and Doxsey, S. (2018). New dimensions of asymmetric division in vertebrates. Cytoskeleton (Hoboken, NJ 75, 87-102.Walther, A., and Wendland, J. (2003). An improved transformation protocol for the human fungal pathogen Candida albicans. Curr Genet 42, 339-343.Wang, A., Raniga, P.P., Lane, S., Lu, Y., and Liu, H. (2009). Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes. Mol Cell Biol 29, 4406-4416.Wang, H., Huang, Z.X., Au Yong, J.Y., Zou, H., Zeng, G., Gao, J., Wang, Y., Wong, A.H., and Wang, Y. (2016). CDK phosphorylates the polarisome scaffold Spa2 to maintain its localization at the site of cell growth. Molecular microbiology 101, 250-264.Wang, Y. (2009). CDKs and the yeast-hyphal decision. Current opinion in microbiology 12, 644-649.Weirich, C.S., Erzberger, J.P., and Barral, Y. (2008). The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol 9, 478-489.Weiss, E.L. (2012). Mitotic exit and separation of mother and daughter cells. Genetics 192, 1165-1202.Weiss, E.L., Kurischko, C., Zhang, C., Shokat, K., Drubin, D.G., and Luca, F.C. (2002). The Saccharomyces cerevisiae Mob2p-Cbk1p kinase complex promotes polarized growth and acts with the mitotic exit network to facilitate daughter cell-specific localization of Ace2p transcription factor. The Journal of cell biology 158, 885-900.Wheeler, R.T., Kupiec, M., Magnelli, P., Abeijon, C., and Fink, G.R. (2003). A Saccharomyces cerevisiae mutant with increased virulence. Proceedings of the National Academy of Sciences of the United States of America 100, 2766-2770.Wilson, D., Naglik, J.R., and Hube, B. (2016). The Missing Link between Candida albicans Hyphal Morphogenesis and Host Cell Damage. PLoS pathogens 12, e1005867.Wilson, R.B., Davis, D., Enloe, B.M., and Mitchell, A.P. (2000). A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast (Chichester, England) 16, 65-70.Wilson, R.B., Davis, D., and Mitchell, A.P. (1999). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181, 1868-1874.Wolfe, B.A., McDonald, W.H., Yates, J.R., 3rd, and Gould, K.L. (2006). Phospho-regulation of the Cdc14/Clp1 phosphatase delays late mitotic events in S. pombe. Developmental cell 11, 423-430.Xiong, S., Lorenzen, K., Couzens, A.L., Templeton, C.M., Rajendran, D., Mao, D.Y.L., Juang, Y.C., Chiovitti, D., Kurinov, I., Guettler, S., et al. (2018). Structural Basis for Auto-Inhibition of the NDR1 Kinase Domain by an Atypically Long Activation Segment. Structure 26, 1101-1115 e1106.Xu, X.L., Lee, R.T., Fang, H.M., Wang, Y.M., Li, R., Zou, H., Zhu, Y., and Wang, Y. (2008). Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell host & microbe 4, 28-39.Yarden, O., Plamann, M., Ebbole, D.J., and Yanofsky, C. (1992). cot-1, a gene required for hyphal elongation in Neurospora crassa, encodes a protein kinase. The EMBO journal 11, 2159-2166.Yue, P., Zhang, Y., Mei, K., Wang, S., Lesigang, J., Zhu, Y., Dong, G., and Guo, W. (2017). Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion. Nature communications 8, 14236.Zeng, G., Wang, Y.M., and Wang, Y. (2012). Cdc28-Cln3 phosphorylation of Sla1 regulates actin patch dynamics in different modes of fungal growth. Molecular biology of the cell 23, 3485-3497.Zheng, X., and Wang, Y. (2004). Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. The EMBO journal 23, 1845-1856.Zheng, X.D., Lee, R.T., Wang, Y.M., Lin, Q.S., and Wang, Y. (2007). Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth. The EMBO journal 26, 3760-3769.Zheng, X.D., Wang, Y.M., and Wang, Y. (2003). CaSPA2 is important for polarity establishment and maintenance in Candida albicans. Molecular microbiology 49, 1391-1405.

Literals

  • vcard:url
  • ou:programaDoctorado
    • Programa De Doctorado En Biología Molecular Y Celular, Biomedicina Y Biotecnología Por La Universidad De Extremadura
  • dcterms:creator
    • Rojo Dominguez, Elvira Patricia
  • dcterms:director
    • Correa Bordes, Jaime Tomás (Director)
  • dcterms:identifier
    • 2018-29
  • dcterms:description
    • RESUMENEl hongo C. albicans forma parte de la microbiota comensal de las mucosas del tracto gastrointestinal y genitourinario de seres humanos. En condiciones de disbiosis o inmunosupresión, se produce una transición de comensal a patógeno en la que se producen cambios morfológicos que tienen relevancia en la producción de daño en las células epiteliales del huésped. La NDR quinasa Cbk1, efector final de la ruta RAM/MOR, desempeña un papel esencial en este proceso de transición morfológica ya que células deficientes en actividad Cbk1 son incapaces de formar hifas. Esta quinasa es capaz de integrar las señales ambientales inductoras del crecimiento hifal aunque se desconocen los mecanismos postraduccionales implicados. Este estudio ha puesto de manifiesto que Cbk1 modifica su patrón de fosforilación en respuesta a suero en dos etapas. Al inicio de la respuesta, durante la formación del tubo germinativo, se produce una rápida desfosforilación que depende de la fosfatasa Cdc14 y de la ruta cAMP-PKA. Posteriormente, durante el mantenimiento del crecimiento hifal, Cbk1 es refosforilada por un mecanismo que depende de la quinasa dependiente de ciclina (Cdk) Cdc28 y de la ciclina específica de miceliación Hgc1. El análisis de los mutantes fosfodeficientes y fosfomiméticos en los posibles residuos fosfoaceptores de Cbk1 han puesto de manifiesto que estas modificaciones son esenciales para mantener el crecimiento polarizado de la hifa e inhibir la separación celular. Además, los resultados derivados de las interacciones génicas con SSD1 nos ha permitido concluir que la función de Cbk1 al inicio de la respuesta a suero consiste en inhibir la función de Ssd1, proteína que reprime la traducción de los mRNAS a los que está unido, mientras que, durante el mantenimiento de la respuesta, su función en el crecimiento hifal es independiente de su control sobre Ssd1. Con el fin de caracterizar mejor el papel de Cbk1 en esta segunda fase, se construyó el mutante cbk1-M412A que dio lugar a una quinasa sensible al análogo 1NM-PP1. El uso de este mutante nos permitió inactivar la quinasa rápidamente cuando las células habían formado hifas. Este tipo de experimentos nos ha permitido concluir que la actividad de Cbk1 es necesaria para mantener a Spa2, componente del polarisoma, localizado en el ápice de la hifa de forma constante e independiente del ciclo celular. También hemos puesto de manifiesto una función no esperada en la parada del ciclo celular de las células subapicales.Por último, en este trabajo hemos profundizado en la regulación de la fosfatasa Cdc14, que también es necesaria para activar el crecimiento hifal en respuesta a suero. Nuestros resultados han permitido identificar a las quinasas Cdc28, Cbk1 y a la propia fosfatasa, como factores importantes que regulan la función de Cdc14. La generación de un mutante catalíticamente inactivo de Cdc14, cdc14-CS, y el estudio de su estado de fosforilación en diferentes fondos genéticos nos ha permitido concluir que Cdc14 se autodesfosforila mediante interacciones intermoleculares, actividad que requiere de la señalización mediada por la ruta RAM/MOR. También, los resultados obtenidos con el mutante condicional cdc28-as sugieren que esta Cdk estabiliza e inhibe la actividad de Cdc14. Todas estas relaciones nos han llevado a proponer un modelo distinto al descrito en S. cerevisiae sobre el control de Cdc14 al final de la mitosis.BIBLIOGRAFÍAAlonso-Monge, R., Navarro-Garcia, F., Roman, E., Negredo, A.I., Eisman, B., Nombela, C., and Pla, J. (2003). The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryotic cell 2, 351-361.Bachewich, C., and Whiteway, M. (2005). Cyclin Cln3p links G1 progression to hyphal and pseudohyphal development in Candida albicans. Eukaryotic cell 4, 95-102.Bahn, Y.S., Staab, J., and Sundstrom, P. (2003). Increased high-affinity phosphodiesterase PDE2 gene expression in germ tubes counteracts CAP1-dependent synthesis of cyclic AMP, limits hypha production and promotes virulence of Candida albicans. Molecular microbiology 50, 391-409.Bardin, A.J., and Amon, A. (2001). Men and sin: what's the difference? Nat Rev Mol Cell Biol 2, 815-826.Bates, S. (2018). Candida albicans Cdc15 is essential for mitotic exit and cytokinesis. Scientific reports 8, 8899.Berman, J., and Sudbery, P.E. (2002). Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 3, 918-930.Bernardo, S.M., Rane, H.S., Chavez-Dozal, A., and Lee, S.A. (2014). Secretion and filamentation are mediated by the Candida albicans t-SNAREs Sso2p and Sec9p. FEMS yeast research 14, 762-775.Bidlingmaier, S., Weiss, E.L., Seidel, C., Drubin, D.G., and Snyder, M. (2001). The Cbk1p pathway is important for polarized cell growth and cell separation in Saccharomyces cerevisiae. Mol Cell Biol 21, 2449-2462.Bishop, A., Lane, R., Beniston, R., Chapa-y-Lazo, B., Smythe, C., and Sudbery, P. (2010). Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase. The EMBO journal 29, 2930-2942.Bishop, A.C., Ubersax, J.A., Petsch, D.T., Matheos, D.P., Gray, N.S., Blethrow, J., Shimizu, E., Tsien, J.Z., Schultz, P.G., Rose, M.D., et al. (2000). A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395-401.Biswas, K., and Morschhauser, J. (2005). The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Molecular microbiology 56, 649-669.Biswas, S., Van Dijck, P., and Datta, A. (2007). Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 71, 348-376.Blethrow, J., Zhang, C., Shokat, K.M., and Weiss, E.L. (2004). Design and use of analog-sensitive protein kinases. Current protocols in molecular biology Chapter 18, Unit 18 11.Bockmuhl, D.P., and Ernst, J.F. (2001). A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics 157, 1523-1530.Brace, J., Hsu, J., and Weiss, E.L. (2011). Mitotic Exit Control of the Saccharomyces cerevisiae Ndr/LATS Kinase Cbk1 Regulates Daughter Cell Separation after Cytokinesis. Mol Cell Biol 31, 721-735.Braun, B.R., Head, W.S., Wang, M.X., and Johnson, A.D. (2000). Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156, 31-44.Braun, B.R., and Johnson, A.D. (1997). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105-109.Braun, B.R., Kadosh, D., and Johnson, A.D. (2001). NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. The EMBO journal 20, 4753-4761.Bremmer, S.C., Hall, H., Martinez, J.S., Eissler, C.L., Hinrichsen, T.H., Rossie, S., Parker, L.L., Hall, M.C., and Charbonneau, H. (2012). Cdc14 phosphatases preferentially dephosphorylate a subset of cyclin-dependent kinase (Cdk) sites containing phosphoserine. The Journal of biological chemistry 287, 1662-1669.Bruno, V.M., Wang, Z., Marjani, S.L., Euskirchen, G.M., Martin, J., Sherlock, G., and Snyder, M. (2010). Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq. Genome research 20, 1451-1458.Caballero-Lima, D., Hautbergue, G.M., Wilson, S.A., and Sudbery, P.E. (2014). In Candida albicans hyphae, Sec2p is physically associated with SEC2 mRNA on secretory vesicles. Molecular microbiology 94, 828-842.Caballero-Lima, D., and Sudbery, P.E. (2014). In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension. Molecular biology of the cell 25, 1097-1110.Cao, C., Wu, M., Bing, J., Tao, L., Ding, X., Liu, X., and Huang, G. (2017). Global regulatory roles of the cAMP/PKA pathway revealed by phenotypic, transcriptomic and phosphoproteomic analyses in a null mutant of the PKA catalytic subunit in Candida albicans. Molecular microbiology 105, 46-64.Carlisle, P.L., and Kadosh, D. (2010). Candida albicans Ume6, a filament-specific transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-related protein. Eukaryotic cell 9, 1320-1328.Casadevall, A., and Pirofski, L.A. (2003). The damage-response framework of microbial pathogenesis. Nature reviews 1, 17-24.Clemente-Blanco, A., Gonzalez-Novo, A., Machin, F., Caballero-Lima, D., Aragon, L., Sanchez, M., de Aldana, C.R., Jimenez, J., and Correa-Bordes, J. (2006). The Cdc14p phosphatase affects late cell-cycle events and morphogenesis in Candida albicans. Journal of cell science 119, 1130-1143.Colman-Lerner, A., Chin, T.E., and Brent, R. (2001). Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107, 739-750.Chan, E.H., Nousiainen, M., Chalamalasetty, R.B., Schafer, A., Nigg, E.A., and Sillje, H.H. (2005). The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24, 2076-2086.Chapa y Lazo, B., Bates, S., and Sudbery, P. (2005). The G1 cyclin Cln3 regulates morphogenesis in Candida albicans. Eukaryotic cell 4, 90-94.Chiou, J.G., Balasubramanian, M.K., and Lew, D.J. (2017). Cell Polarity in Yeast. Annual review of cell and developmental biology 33, 77-101.Das, M., Wiley, D.J., Chen, X., Shah, K., and Verde, F. (2009). The conserved NDR kinase Orb6 controls polarized cell growth by spatial regulation of the small GTPase Cdc42. Curr Biol 19, 1314-1319.de Bettignies, G., and Johnston, L.H. (2003). The mitotic exit network. Curr Biol 13, R301.Dumitrescu, T.P., and Saunders, W.S. (2002). The FEAR Before MEN: networks of mitotic exit. Cell cycle (Georgetown, Tex 1, 304-307.Emoto, K., He, Y., Ye, B., Grueber, W.B., Adler, P.N., Jan, L.Y., and Jan, Y.N. (2004). Control of dendritic branching and tiling by the Tricornered-kinase/Furry signaling pathway in Drosophila sensory neurons. Cell 119, 245-256.Evangelista, M., Blundell, K., Longtine, M.S., Chow, C.J., Adames, N., Pringle, J.R., Peter, M., and Boone, C. (1997). Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis. Science (New York, NY 276, 118-122.Fang, H.M., and Wang, Y. (2006). RA domain-mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development. Molecular microbiology 61, 484-496.Fernandez, I., Ubach, J., Dulubova, I., Zhang, X., Sudhof, T.C., and Rizo, J. (1998). Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94, 841-849.Fonzi, W.A., and Irwin, M.Y. (1993). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717-728.Fujiwara, T., Tanaka, K., Mino, A., Kikyo, M., Takahashi, K., Shimizu, K., and Takai, Y. (1998). Rho1p-Bni1p-Spa2p interactions: implication in localization of Bni1p at the bud site and regulation of the actin cytoskeleton in Saccharomyces cerevisiae. Molecular biology of the cell 9, 1221-1233.Gallegos, M.E., and Bargmann, C.I. (2004). Mechanosensory neurite termination and tiling depend on SAX-2 and the SAX-1 kinase. Neuron 44, 239-249.Garcia-Sanchez, S., Mavor, A.L., Russell, C.L., Argimon, S., Dennison, P., Enjalbert, B., and Brown, A.J. (2005). Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Molecular biology of the cell 16, 2913-2925.Geymonat, M., Jensen, S., and Johnston, L.H. (2002). Mitotic exit: the Cdc14 double cross. Curr Biol 12, R482-484.Gogl, G., Schneider, K.D., Yeh, B.J., Alam, N., Nguyen Ba, A.N., Moses, A.M., Hetenyi, C., Remenyi, A., and Weiss, E.L. (2015). The Structure of an NDR/LATS Kinase-Mob Complex Reveals a Novel Kinase-Coactivator System and Substrate Docking Mechanism. PLoS biology 13, e1002146.Gola, S., Martin, R., Walther, A., Dunkler, A., and Wendland, J. (2003). New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast (Chichester, England) 20, 1339-1347.González-Novo, A., Correa-Bordes, J., Labrador, L., Sánchez, M., Vázquez de Aldana, C.R., and Jiménez, J. (2008). Sep7 is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth. Molecular biology of the cell 19, 1509-1518.Gow, N.A., and Gooday, G.W. (1982). Vacuolation, branch production and linear growth of germ tubes in Candida albicans. Journal of general microbiology 128, 2195-2198.Gray, C.H., Good, V.M., Tonks, N.K., and Barford, D. (2003). The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase. The EMBO journal 22, 3524-3535.Gregan, J., Zhang, C., Rumpf, C., Cipak, L., Li, Z., Uluocak, P., Nasmyth, K., and Shokat, K.M. (2007). Construction of conditional analog-sensitive kinase alleles in the fission yeast Schizosaccharomyces pombe. Nature protocols 2, 2996-3000.Gutiérrez-Escribano, P. (2011). Role of the NDR kinase Cbk1 in the regulation of morphogenesis and transcriptional control in C. albicans. Tesis Doctoral Universidad de Extremadura.Gutierrez-Escribano, P., Gonzalez-Novo, A., Suarez, M.B., Li, C.R., Wang, Y., de Aldana, C.R., and Correa-Bordes, J. (2011). CDK-dependent phosphorylation of Mob2 is essential for hyphal development in Candida albicans. Molecular biology of the cell 22, 2458-2469.Gutierrez-Escribano, P., Zeidler, U., Suarez, M.B., Bachellier-Bassi, S., Clemente-Blanco, A., Bonhomme, J., Vazquez de Aldana, C.R., d'Enfert, C., and Correa-Bordes, J. (2012). The NDR/LATS Kinase Cbk1 Controls the Activity of the Transcriptional Regulator Bcr1 during Biofilm Formation in Candida albicans. PLoS pathogens 8, e1002683.Hall, R.A., and Noverr, M.C. (2017). Fungal interactions with the human host: exploring the spectrum of symbiosis. Current opinion in microbiology 40, 58-64.Harcus, D., Nantel, A., Marcil, A., Rigby, T., and Whiteway, M. (2004). Transcription profiling of cyclic AMP signaling in Candida albicans. Molecular biology of the cell 15, 4490-4499.Hazan, I., Sepulveda-Becerra, M., and Liu, H. (2002). Hyphal elongation is regulated independently of cell cycle in Candida albicans. Molecular biology of the cell 13, 134-145.Hergovich, A., Bichsel, S.J., and Hemmings, B.A. (2005). Human NDR kinases are rapidly activated by MOB proteins through recruitment to the plasma membrane and phosphorylation. Mol Cell Biol 25, 8259-8272.Hergovich, A., Stegert, M.R., Schmitz, D., and Hemmings, B.A. (2006). NDR kinases regulate essential cell processes from yeast to humans. Nat Rev Mol Cell Biol 7, 253-264.Hogan, D.A., and Sundstrom, P. (2009). The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future microbiology 4, 1263-1270.Hogan, D.J., Riordan, D.P., Gerber, A.P., Herschlag, D., and Brown, P.O. (2008). Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS biology 6, e255.Holt, L.J., Tuch, B.B., Villen, J., Johnson, A.D., Gygi, S.P., and Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science (New York, NY 325, 1682-1686.Hornby, J.M., Jensen, E.C., Lisec, A.D., Tasto, J.J., Jahnke, B., Shoemaker, R., Dussault, P., and Nickerson, K.W. (2001). Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67, 2982-2992.Hotz, M., and Barral, Y. (2014). The Mitotic Exit Network: new turns on old pathways. Trends in cell biology 24, 145-152.Hou, M.C., Wiley, D.J., Verde, F., and McCollum, D. (2003). Mob2p interacts with the protein kinase Orb6p to promote coordination of cell polarity with cell cycle progression. Journal of cell science 116, 125-135.Howell, A.S., and Lew, D.J. (2012). Morphogenesis and the cell cycle. Genetics 190, 51-77.Hoyer, L.L. (2001). The ALS gene family of Candida albicans. Trends Microbiol 9, 176-180.Jakobsen, M.K., Cheng, Z., Lam, S.K., Roth-Johnson, E., Barfield, R.M., and Schekman, R. (2013). Phosphorylation of Chs2p regulates interaction with COPII. Journal of cell science 126, 2151-2156.Jansen, J.M., Barry, M.F., Yoo, C.K., and Weiss, E.L. (2006). Phosphoregulation of Cbk1 is critical for RAM network control of transcription and morphogenesis. The Journal of cell biology 175, 755-766.Jansen, J.M., Wanless, A.G., Seidel, C.W., and Weiss, E.L. (2009). Cbk1 regulation of the RNA-binding protein Ssd1 integrates cell fate with translational control. Curr Biol 19, 2114-2120.Jarosz, L.M., Deng, D.M., van der Mei, H.C., Crielaard, W., and Krom, B.P. (2009). Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. Eukaryotic cell 8, 1658-1664.Jones, L.A., and Sudbery, P.E. (2010). Spitzenkorper, exocyst, and polarisome components in Candida albicans hyphae show different patterns of localization and have distinct dynamic properties. Eukaryotic cell 9, 1455-1465.Jorgensen, P., Nelson, B., Robinson, M.D., Chen, Y., Andrews, B., Tyers, M., and Boone, C. (2002). High-resolution genetic mapping with ordered arrays of Saccharomyces cerevisiae deletion mutants. Genetics 162, 1091-1099.Kadosh, D., and Johnson, A.D. (2001). Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21, 2496-2505.Kadosh, D., and Johnson, A.D. (2005). Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Molecular biology of the cell 16, 2903-2912.Kelly, M.T., MacCallum, D.M., Clancy, S.D., Odds, F.C., Brown, A.J., and Butler, G. (2004). The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Molecular microbiology 53, 969-983.Knaus, M., Pelli-Gulli, M.P., van Drogen, F., Springer, S., Jaquenoud, M., and Peter, M. (2007). Phosphorylation of Bem2p and Bem3p may contribute to local activation of Cdc42p at bud emergence. The EMBO journal 26, 4501-4513.Kodama, S., Ishizuka, J., Miyashita, I., Ishii, T., Nishiuchi, T., Miyoshi, H., and Kubo, Y. (2017). The morphogenesis-related NDR kinase pathway of Colletotrichum orbiculare is required for translating plant surface signals into infection-related morphogenesis and pathogenesis. PLoS pathogens 13, e1006189.Kottom, T.J., Kohler, J.R., Thomas, C.F., Jr., Fink, G.R., and Limper, A.H. (2003). Lung epithelial cells and extracellular matrix components induce expression of Pneumocystis carinii STE20, a gene complementing the mating and pseudohyphal growth defects of STE20 mutant yeast. Infection and immunity 71, 6463-6471.Kurischko, C., Kim, H.K., Kuravi, V.K., Pratzka, J., and Luca, F.C. (2011). The yeast Cbk1 kinase regulates mRNA localization via the mRNA-binding protein Ssd1. The Journal of cell biology 192, 583-598.Kurischko, C., Kuravi, V.K., Wannissorn, N., Nazarov, P.A., Husain, M., Zhang, C., Shokat, K.M., McCaffery, J.M., and Luca, F.C. (2008). The yeast LATS/Ndr kinase Cbk1 regulates growth via Golgi-dependent glycosylation and secretion. Molecular biology of the cell 19, 5559-5578.Kurischko, C., Weiss, G., Ottey, M., and Luca, F.C. (2005). A role for the Saccharomyces cerevisiae regulation of Ace2 and polarized morphogenesis signaling network in cell integrity. Genetics 171, 443-455.Lavoie, H., Sellam, A., Askew, C., Nantel, A., and Whiteway, M. (2008). A toolbox for epitope-tagging and genome-wide location analysis in Candida albicans. BMC Genomics 9, 578.Leberer, E., Harcus, D., Dignard, D., Johnson, L., Ushinsky, S., Thomas, D.Y., and Schroppel, K. (2001). Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Molecular microbiology 42, 673-687.Lee, H., Damsz, B., Woloshuk, C.P., Bressan, R.A., and Narasimhan, M.L. (2010). Use of the plant defense protein osmotin to identify Fusarium oxysporum genes that control cell wall properties. Eukaryotic cell 9, 558-568.Lee, H.J., Kim, J.M., Kang, W.K., Yang, H., and Kim, J.Y. (2015). The Ndr kinase Cbk1 down-regulates the transcriptional repressor Nrg1 through the mRNA-binding protein Ssd1 in Candida albicans. Eukaryotic cell.Lee, K.H., Hsu, E.C., Guh, J.H., Yang, H.C., Wang, D., Kulp, S.K., Shapiro, C.L., and Chen, C.S. (2011). Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator. The Journal of biological chemistry 286, 39247-39258.Lengefeld, J., and Barral, Y. (2018). Asymmetric Segregation of Aged Spindle Pole Bodies During Cell Division: Mechanisms and Relevance Beyond Budding Yeast? Bioessays 40, e1800038.Lew, D.J., and Reed, S.I. (1993). Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. The Journal of cell biology 120, 1305-1320.Lew, D.J., and Reed, S.I. (1995). A cell cycle checkpoint monitors cell morphogenesis in budding yeast. The Journal of cell biology 129, 739-749.Li, C.R., Au Yong, J.Y., Wang, Y.M., and Wang, Y. (2012). CDK regulates septin organization through cell-cycle-dependent phosphorylation of the Nim1-related kinase Gin4. Journal of cell science 125, 2533-2543.Li, C.R., Lee, R.T., Wang, Y.M., Zheng, X.D., and Wang, Y. (2007). Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation. Journal of cell science 120, 1898-1907.Lin, C.J., and Chen, Y.L. (2018). Conserved and Divergent Functions of the cAMP/PKA Signaling Pathway in Candida albicans and Candida tropicalis. Journal of fungi (Basel, Switzerland) 4.Liu, H., Kohler, J., and Fink, G.R. (1994). Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science (New York, NY 266, 1723-1726.Loeb, J.D., Sepulveda-Becerra, M., Hazan, I., and Liu, H. (1999). A G1 cyclin is necessary for maintenance of filamentous growth in Candida albicans. Mol Cell Biol 19, 4019-4027.Lu, Y., Su, C., Unoje, O., and Liu, H. (2014). Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. Proceedings of the National Academy of Sciences of the United States of America 111, 1975-1980.Lu, Y., Su, C., Wang, A., and Liu, H. (2011). Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS biology 9, e1001105.Luo, G., Zhang, J., Luca, F.C., and Guo, W. (2013). Mitotic phosphorylation of Exo84 disrupts exocyst assembly and arrests cell growth. The Journal of cell biology 202, 97-111.Maerz, S., and Seiler, S. (2010). Tales of RAM and MOR: NDR kinase signaling in fungal morphogenesis. Current opinion in microbiology 13, 663-671.Maerz, S., Ziv, C., Vogt, N., Helmstaedt, K., Cohen, N., Gorovits, R., Yarden, O., and Seiler, S. (2008). The nuclear Dbf2-related kinase COT1 and the mitogen-activated protein kinases MAK1 and MAK2 genetically interact to regulate filamentous growth, hyphal fusion and sexual development in Neurospora crassa. Genetics 179, 1313-1325.Mayer, F.L., Wilson, D., and Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence 4, 119-128.Mazanka, E., Alexander, J., Yeh, B.J., Charoenpong, P., Lowery, D.M., Yaffe, M., and Weiss, E.L. (2008). The NDR/LATS family kinase Cbk1 directly controls transcriptional asymmetry. PLoS biology 6, e203.Mazanka, E., and Weiss, E.L. (2010). Sequential counteracting kinases restrict an asymmetric gene expression program to early G1. Molecular biology of the cell 21, 2809-2820.McCollum, D., and Gould, K.L. (2001). Timing is everything: regulation of mitotic exit and cytokinesis by the MEN and SIN. Trends in cell biology 11, 89-95.McCusker, D., Denison, C., Anderson, S., Egelhofer, T.A., Yates, J.R., 3rd, Gygi, S.P., and Kellogg, D.R. (2007). Cdk1 coordinates cell-surface growth with the cell cycle. Nat Cell Biol 9, 506-515.McNemar, M.D., and Fonzi, W.A. (2002). Conserved serine/threonine kinase encoded by CBK1 regulates expression of several hypha-associated transcripts and genes encoding cell wall proteins in Candida albicans. J Bacteriol 184, 2058-2061.Meitinger, F., Palani, S., and Pereira, G. (2012). The power of MEN in cytokinesis. Cell cycle (Georgetown, Tex 11, 219-228.Mendenhall, M.D., and Hodge, A.E. (1998). Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62, 1191-1243.Miwa, T., Takagi, Y., Shinozaki, M., Yun, C.W., Schell, W.A., Perfect, J.R., Kumagai, H., and Tamaki, H. (2004). Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans. Eukaryotic cell 3, 919-931.Mohl, D.A., Huddleston, M.J., Collingwood, T.S., Annan, R.S., and Deshaies, R.J. (2009). Dbf2-Mob1 drives relocalization of protein phosphatase Cdc14 to the cytoplasm during exit from mitosis. The Journal of cell biology 184, 527-539.Moyes, D.L., Runglall, M., Murciano, C., Shen, C., Nayar, D., Thavaraj, S., Kohli, A., Islam, A., Mora-Montes, H., Challacombe, S.J., et al. (2010). A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell host & microbe 8, 225-235.Moyes, D.L., Wilson, D., Richardson, J.P., Mogavero, S., Tang, S.X., Wernecke, J., Hofs, S., Gratacap, R.L., Robbins, J., Runglall, M., et al. (2016). Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64-68.Murad, A.M., Leng, P., Straffon, M., Wishart, J., Macaskill, S., MacCallum, D., Schnell, N., Talibi, D., Marechal, D., Tekaia, F., et al. (2001). NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. The EMBO journal 20, 4742-4752.Nantel, A., Dignard, D., Bachewich, C., Harcus, D., Marcil, A., Bouin, A.P., Sensen, C.W., Hogues, H., van het Hoog, M., Gordon, P., et al. (2002). Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Molecular biology of the cell 13, 3452-3465.Nelson, B., Kurischko, C., Horecka, J., Mody, M., Nair, P., Pratt, L., Zougman, A., McBroom, L.D., Hughes, T.R., Boone, C., et al. (2003). RAM: a conserved signaling network that regulates Ace2p transcriptional activity and polarized morphogenesis. Molecular biology of the cell 14, 3782-3803.Noble, S.M., Gianetti, B.A., and Witchley, J.N. (2017). Candida albicans cell-type switching and functional plasticity in the mammalian host. Nature reviews 15, 96-108.Novak, B., Tyson, J.J., Gyorffy, B., and Csikasz-Nagy, A. (2007). Irreversible cell-cycle transitions are due to systems-level feedback. Nature cell biology 9, 724-728.Nunez, I., Rodriguez Pino, M., Wiley, D.J., Das, M.E., Chen, C., Goshima, T., Kume, K., Hirata, D., Toda, T., and Verde, F. (2016). Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5. eLife 5.Ovejero, S., Ayala, P., Malumbres, M., Pimentel-Muinos, F.X., Bueno, A., and Sacristan, M.P. (2018). Biochemical analyses reveal amino acid residues critical for cell cycle-dependent phosphorylation of human Cdc14A phosphatase by cyclin-dependent kinase 1. Scientific reports 8, 11871.Park, H.O., and Bi, E. (2007). Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 71, 48-96.Pfaller, M.A., and Diekema, D.J. (2007). Epidemiology of invasive candidiasis: a persistent public health problem. Clinical microbiology reviews 20, 133-163.Phan, Q.T., Myers, C.L., Fu, Y., Sheppard, D.C., Yeaman, M.R., Welch, W.H., Ibrahim, A.S., Edwards, J.E., Jr., and Filler, S.G. (2007). Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS biology 5, e64.Queralt, E., and Uhlmann, F. (2008). Cdk-counteracting phosphatases unlock mitotic exit. Current opinion in cell biology 20, 661-668.Racki, W.J., Becam, A.M., Nasr, F., and Herbert, C.J. (2000). Cbk1p, a protein similar to the human myotonic dystrophy kinase, is essential for normal morphogenesis in Saccharomyces cerevisiae. The EMBO journal 19, 4524-4532.Rechsteiner, M., and Rogers, S.W. (1996). PEST sequences and regulation by proteolysis. Trends in biochemical sciences 21, 267-271.Reijnst, P., Walther, A., and Wendland, J. (2011). Dual-colour fluorescence microscopy using yEmCherry-/GFP-tagging of eisosome components Pil1 and Lsp1 in Candida albicans. Yeast (Chichester, England) 28, 331-338.Rock, J.M., Lim, D., Stach, L., Ogrodowicz, R.W., Keck, J.M., Jones, M.H., Wong, C.C., Yates, J.R., 3rd, Winey, M., Smerdon, S.J., et al. (2013). Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes. Science (New York, NY 340, 871-875.Rogers, S., Wells, R., and Rechsteiner, M. (1986). Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science (New York, NY 234, 364-368.Santos, M.A., Cheesman, C., Costa, V., Moradas-Ferreira, P., and Tuite, M.F. (1999). Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp. Molecular microbiology 31, 937-947.Saputo, S., Chabrier-Rosello, Y., Luca, F.C., Kumar, A., and Krysan, D.J. (2012). The RAM network in pathogenic fungi. Eukaryotic cell 11, 708-717.Saputo, S., Kumar, A., and Krysan, D.J. (2014). Efg1 directly regulates ACE2 expression to mediate cross talk between the cAMP/PKA and RAM pathways during Candida albicans morphogenesis. Eukaryotic cell 13, 1169-1180.Sartorel, E., and Perez-Martin, J. (2012). The distinct interaction between cell cycle regulation and the widely conserved morphogenesis-related (MOR) pathway in the fungus Ustilago maydis determines morphology. Journal of cell science 125, 4597-4608.Sasse, C., and Morschhauser, J. (2012). Gene deletion in Candida albicans wild-type strains using the SAT1-flipping strategy. Methods in molecular biology (Clifton, NJ 845, 3-17.Sbia, M., Parnell, E.J., Yu, Y., Olsen, A.E., Kretschmann, K.L., Voth, W.P., and Stillman, D.J. (2008). Regulation of the yeast Ace2 transcription factor during the cell cycle. The Journal of biological chemistry 283, 11135-11145.Schaub, Y., Dunkler, A., Walther, A., and Wendland, J. (2006). New pFA-cassettes for PCR-based gene manipulation in Candida albicans. J Basic Microbiol 46, 416-429.Seiler, S., Vogt, N., Ziv, C., Gorovits, R., and Yarden, O. (2006). The STE20/germinal center kinase POD6 interacts with the NDR kinase COT1 and is involved in polar tip extension in Neurospora crassa. Molecular biology of the cell 17, 4080-4092.Shapiro, R.S., Robbins, N., and Cowen, L.E. (2011). Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75, 213-267.Sheu, Y.J., Barral, Y., and Snyder, M. (2000). Polarized growth controls cell shape and bipolar bud site selection in Saccharomyces cerevisiae. Molecular and cellular biology 20, 5235-5247.Shou, W., Seol, J.H., Shevchenko, A., Baskerville, C., Moazed, D., Chen, Z.W., Jang, J., Shevchenko, A., Charbonneau, H., and Deshaies, R.J. (1999). Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233-244.Sinha, I., Wang, Y.M., Philp, R., Li, C.R., Yap, W.H., and Wang, Y. (2007). Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development. Developmental cell 13, 421-432.Song, Y., Cheon, S.A., Lee, K.E., Lee, S.Y., Lee, B.K., Oh, D.B., Kang, H.A., and Kim, J.Y. (2008). Role of the RAM network in cell polarity and hyphal morphogenesis in Candida albicans. Molecular biology of the cell 19, 5456-5477.Sonneborn, A., Bockmuhl, D.P., Gerads, M., Kurpanek, K., Sanglard, D., and Ernst, J.F. (2000). Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Molecular microbiology 35, 386-396.Sopko, R., Huang, D., Smith, J.C., Figeys, D., and Andrews, B.J. (2007). Activation of the Cdc42p GTPase by cyclin-dependent protein kinases in budding yeast. The EMBO journal 26, 4487-4500.Stegert, M.R., Tamaskovic, R., Bichsel, S.J., Hergovich, A., and Hemmings, B.A. (2004). Regulation of NDR2 protein kinase by multi-site phosphorylation and the S100B calcium-binding protein. The Journal of biological chemistry 279, 23806-23812.Stegmeier, F., and Amon, A. (2004). Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu Rev Genet 38, 203-232.Stegmeier, F., Visintin, R., and Amon, A. (2002). Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108, 207-220.Stoldt, V.R., Sonneborn, A., Leuker, C.E., and Ernst, J.F. (1997). Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. The EMBO journal 16, 1982-1991.Sudbery, P., Gow, N., and Berman, J. (2004). The distinct morphogenic states of Candida albicans. Trends Microbiol 12, 317-324.Sudbery, P.E. (2011). Growth of Candida albicans hyphae. Nature reviews 9, 737-748.Sullivan, M., and Morgan, D.O. (2007). A novel destruction sequence targets the meiotic regulator Spo13 for anaphase-promoting complex-dependent degradation in anaphase I. J Biol Chem 282, 19710-19715.Tamaskovic, R., Bichsel, S.J., and Hemmings, B.A. (2003). NDR family of AGC kinases--essential regulators of the cell cycle and morphogenesis. FEBS letters 546, 73-80.Tanaka, S., Yamada, K., Yabumoto, K., Fujii, S., Huser, A., Tsuji, G., Koga, H., Dohi, K., Mori, M., Shiraishi, T., et al. (2007). Saccharomyces cerevisiae SSD1 orthologues are essential for host infection by the ascomycete plant pathogens Colletotrichum lagenarium and Magnaporthe grisea. Molecular microbiology 64, 1332-1349.Teh, E.M., Chai, C.C., and Yeong, F.M. (2009). Retention of Chs2p in the ER requires N-terminal CDK1-phosphorylation sites. Cell cycle (Georgetown, Tex 8, 2964-2974.Traverso, E.E., Baskerville, C., Liu, Y., Shou, W., James, P., Deshaies, R.J., and Charbonneau, H. (2001). Characterization of the Net1 cell cycle-dependent regulator of the Cdc14 phosphatase from budding yeast. The Journal of biological chemistry 276, 21924-21931.Uesono, Y., Toh-e, A., and Kikuchi, Y. (1997). Ssd1p of Saccharomyces cerevisiae associates with RNA. The Journal of biological chemistry 272, 16103-16109.van het Hoog, M., Rast, T.J., Martchenko, M., Grindle, S., Dignard, D., Hogues, H., Cuomo, C., Berriman, M., Scherer, S., Magee, B.B., et al. (2007). Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome biology 8, R52.Verde, F., Wiley, D.J., and Nurse, P. (1998). Fission yeast orb6, a ser/thr protein kinase related to mammalian rho kinase and myotonic dystrophy kinase, is required for maintenance of cell polarity and coordinates cell morphogenesis with the cell cycle. Proceedings of the National Academy of Sciences of the United States of America 95, 7526-7531.Vertii, A., Kaufman, P.D., Hehnly, H., and Doxsey, S. (2018). New dimensions of asymmetric division in vertebrates. Cytoskeleton (Hoboken, NJ 75, 87-102.Walther, A., and Wendland, J. (2003). An improved transformation protocol for the human fungal pathogen Candida albicans. Curr Genet 42, 339-343.Wang, A., Raniga, P.P., Lane, S., Lu, Y., and Liu, H. (2009). Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes. Mol Cell Biol 29, 4406-4416.Wang, H., Huang, Z.X., Au Yong, J.Y., Zou, H., Zeng, G., Gao, J., Wang, Y., Wong, A.H., and Wang, Y. (2016). CDK phosphorylates the polarisome scaffold Spa2 to maintain its localization at the site of cell growth. Molecular microbiology 101, 250-264.Wang, Y. (2009). CDKs and the yeast-hyphal decision. Current opinion in microbiology 12, 644-649.Weirich, C.S., Erzberger, J.P., and Barral, Y. (2008). The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol 9, 478-489.Weiss, E.L. (2012). Mitotic exit and separation of mother and daughter cells. Genetics 192, 1165-1202.Weiss, E.L., Kurischko, C., Zhang, C., Shokat, K., Drubin, D.G., and Luca, F.C. (2002). The Saccharomyces cerevisiae Mob2p-Cbk1p kinase complex promotes polarized growth and acts with the mitotic exit network to facilitate daughter cell-specific localization of Ace2p transcription factor. The Journal of cell biology 158, 885-900.Wheeler, R.T., Kupiec, M., Magnelli, P., Abeijon, C., and Fink, G.R. (2003). A Saccharomyces cerevisiae mutant with increased virulence. Proceedings of the National Academy of Sciences of the United States of America 100, 2766-2770.Wilson, D., Naglik, J.R., and Hube, B. (2016). The Missing Link between Candida albicans Hyphal Morphogenesis and Host Cell Damage. PLoS pathogens 12, e1005867.Wilson, R.B., Davis, D., Enloe, B.M., and Mitchell, A.P. (2000). A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast (Chichester, England) 16, 65-70.Wilson, R.B., Davis, D., and Mitchell, A.P. (1999). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181, 1868-1874.Wolfe, B.A., McDonald, W.H., Yates, J.R., 3rd, and Gould, K.L. (2006). Phospho-regulation of the Cdc14/Clp1 phosphatase delays late mitotic events in S. pombe. Developmental cell 11, 423-430.Xiong, S., Lorenzen, K., Couzens, A.L., Templeton, C.M., Rajendran, D., Mao, D.Y.L., Juang, Y.C., Chiovitti, D., Kurinov, I., Guettler, S., et al. (2018). Structural Basis for Auto-Inhibition of the NDR1 Kinase Domain by an Atypically Long Activation Segment. Structure 26, 1101-1115 e1106.Xu, X.L., Lee, R.T., Fang, H.M., Wang, Y.M., Li, R., Zou, H., Zhu, Y., and Wang, Y. (2008). Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell host & microbe 4, 28-39.Yarden, O., Plamann, M., Ebbole, D.J., and Yanofsky, C. (1992). cot-1, a gene required for hyphal elongation in Neurospora crassa, encodes a protein kinase. The EMBO journal 11, 2159-2166.Yue, P., Zhang, Y., Mei, K., Wang, S., Lesigang, J., Zhu, Y., Dong, G., and Guo, W. (2017). Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion. Nature communications 8, 14236.Zeng, G., Wang, Y.M., and Wang, Y. (2012). Cdc28-Cln3 phosphorylation of Sla1 regulates actin patch dynamics in different modes of fungal growth. Molecular biology of the cell 23, 3485-3497.Zheng, X., and Wang, Y. (2004). Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. The EMBO journal 23, 1845-1856.Zheng, X.D., Lee, R.T., Wang, Y.M., Lin, Q.S., and Wang, Y. (2007). Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth. The EMBO journal 26, 3760-3769.Zheng, X.D., Wang, Y.M., and Wang, Y. (2003). CaSPA2 is important for polarity establishment and maintenance in Candida albicans. Molecular microbiology 49, 1391-1405.
  • dcterms:subject
    • Biologia Molecular De Microorganismos
  • dcterms:title
    • Señalización Por Ndr Quinasas En La Interaccion Patogeno-Hospedador
  • ou:tribunal
    • Pla Alonso, Jesus (Vocal)
    • Fernández Salguero, Pedro (Presidente)
    • Pérez Martín, José (Secretario)

Typed Literals

Recognized prefixes