PUBLICACIÓN

Machine learning methods for low-cost pollen monitoring – Model optimisation and interpretability

Logo Open Access

ACCEDER A LA PUBLICACIÓN: Scopus Orcid

Mills S.A., Maya-Manzano J.M., Tummon F., MacKenzie A.R., Pope F.D.

2023 Science of The Total Environment

Environmental Chemistry (Q1), Environmental Engineering (Q1), Pollution (Q1), Waste Management and Disposal (Q1)

JCR: 8.2

SJR: 1.998


CITAS

8

DOI

10.1016/j.scitotenv.2023.165853

EID

2-s2.0-85168418392

ISSN

0048-9697

EISSN

1879-1026

BIBTEX

@article{Mills_2023, doi = {10.1016/j.scitotenv.2023.165853}, url = {https://doi.org/10.1016%2Fj.scitotenv.2023.165853}, year = 2023, month = {dec}, publisher = {Elsevier {BV}}, volume = {903}, pages = {165853}, author = {Sophie A. Mills and Jos{\'{e}} M. Maya-Manzano and Fiona Tummon and A. Rob MacKenzie and Francis D. Pope}, title = {Machine learning methods for low-cost pollen monitoring {\textendash} Model optimisation and interpretability}, journal = {Science of The Total Environment}}


AUTORES DE LA UEX